LEIBNIZ n-ALGEBRAS

J. M. CASAS, ${ }^{(1)}$ J.-L. LODAY ${ }^{(2)}$ and T. PIRASHVILI ${ }^{(3)}$

${ }^{(1)}$ Dpto Matematica Aplicada, Universidad de Vigo, 36005 Pontevedra, Spain ${ }^{(2)}$ IRMA, ULP et CNRS, 7, rue R. Descartes, 67084 Strasbourg, France
${ }^{(3)}$ Math. Inst., Alexidze str. 1, 380093 Tbilisi, Republic of Georgia

Abstract

A Leibniz n-algebra is a vector space equipped with an n-ary operation which has the property of being a derivation for itself. This property is crucial in Nambu mechanics. For $n=2$ this is the notion of Leibniz algebra. In this paper we prove that the free Leibniz $(n+1)$-algebra can be described in terms of the n-magma, that is the set of n-ary planar trees. Then it is shown that the n-tensor power functor, which makes a Leibniz $(n+1)$-algebra into a Leibniz algebra, sends a free object to a free object. This result is used in the last section, together with former results of Loday and Pirashvili, to construct a small complex which computes Quillen cohomology with coefficients for any Leibniz n-algebra .

Mathematics Subject Classification (2000): 17Axx, 70H05.

1. Introduction

Leibniz algebras were introduced by the second author in [4]. They play an important role in Hochschild homology theory [4], [5] as well as in Nambu mechanics ([6], see also [1]). Let us recall that a Leibniz algebra is a vector space g equipped with a bilinear map $[-,-]: \mathrm{g} \otimes \mathrm{g} \rightarrow \mathrm{g}$ satisfying the identity :

$$
\begin{equation*}
[x,[y, z]]=[[x, y], z]-[[x, z], y] . \tag{1.1}
\end{equation*}
$$

One easily sees that Lie algebras are exactly Leibniz algebras satisfying the relation $[x, x]=0$. Hence Leibniz algebras are a non-commutative version of Lie algebras.

Recently there have been several works dealing with various generalization of Lie structures by extending the binary bracket to an n-bracket (see [1], [2], [9]).

In this paper we introduce the notion of a Leibniz n-algebra - a natural generalization of both concepts. For $n=2$ one recovers Leibniz algebras. Any Leibniz algebra g is also a Leibniz n-algebra under the following n bracket:

$$
\left[x_{1}, x_{2}, \cdots, x_{n}\right]:=\left[x_{1},\left[x_{2}, \cdots,\left[x_{n-1}, x_{n}\right] \cdots\right]\right] .
$$

Conversely, if \mathcal{L} is a Leibniz $(n+1)$-algebra, then on $\mathcal{D}_{n}(\mathcal{L})=\mathcal{L}^{\otimes n}$ the following bracket

$$
\left[a_{1} \otimes \cdots \otimes a_{n}, b_{1} \otimes \cdots \otimes b_{n}\right]:=\sum_{i=1}^{n} a_{1} \otimes \cdots \otimes\left[a_{i}, b_{1}, \cdots, b_{n}\right] \otimes \cdots \otimes a_{n}
$$

makes $\mathcal{D}_{n}(\mathcal{L})$ into a Leibniz algebra. This construction goes back to Gautheron [2] and plays an important role in [1].

The main result of this paper is to show that if \mathcal{L} is a free Leibniz n algebra, then $\mathcal{D}_{n-1}(\mathcal{L})$ is a free Leibniz algebra too (on a different vector space). This result plays an essential role in the cohomological investigation of Leibniz n-algebras, which we consider in the last section.

We first introduce a notion of representation of a Leibniz n-algebra \mathcal{L}. This notion for $n=2$ was already considered in [5]. One observes that if M is a representation of a Leibniz n-algebra \mathcal{L}, then $\operatorname{Hom}(\mathcal{L}, M)$ can be considered as a representation of the Leibniz algebra $\mathcal{D}_{n-1}(\mathcal{L})$. The work of [2] and [1] suggests to define the cohomology of \mathcal{L} with coefficients in M to be $\operatorname{HL}^{*}\left(\mathcal{D}_{n-1}(\mathcal{L}), \operatorname{Hom}(\mathcal{L}, M)\right)$. We deduce from our main theorem that this theory is exactly the Quillen cohomology for Leibniz n-algebras.

2. Derivations

In the whole paper K is a field. All tensor products are taken over K. Let \mathcal{A} be a vector space equipped with an n-linear operation $\omega: \mathcal{A}^{\otimes n} \rightarrow \mathcal{A}$. $\mathrm{A} \operatorname{map} f: \mathcal{A} \rightarrow \mathcal{A}$ is called a derivation with respect to ω if

$$
f\left(\omega\left(a_{1}, \ldots, a_{n}\right)\right)=\sum_{i=1}^{n} \omega\left(a_{1}, \ldots, f\left(a_{i}\right), \cdots, a_{n}\right)
$$

In this case we also say that f is an ω-derivation. We let $\operatorname{Der}_{\omega}(\mathcal{A})$ be the set of all ω-derivations. The following is well-known.

Proposition 2.1 i) The subset $\operatorname{Der}_{\omega}(\mathcal{A})$ of the Lie algebra of endomorphisms $\operatorname{End}(\mathcal{A})$ is a Lie subalgebra.
ii) If $f \in \mathcal{D e r}_{\omega}(\mathcal{A})$ and $f \in \operatorname{Der}_{\sigma}(\mathcal{A})$, then $f \in \mathcal{D e r}_{\omega+\sigma}(\mathcal{A})$. Here σ : $\mathcal{A}^{\otimes n} \rightarrow \mathcal{A}$ is also an n-linear operation.

Proposition 2.2 Let $[-,-]: \mathcal{A}^{\otimes 2} \rightarrow \mathcal{A}$ be a bilinear operation and let $\omega: \mathcal{A}^{\otimes n} \rightarrow \mathcal{A}$ be given by

$$
\omega\left(x_{1}, \cdots, x_{n}\right):=\left[x_{1},\left[x_{2}, \cdots,\left[x_{n-1}, x_{n}\right] \cdots\right]\right] .
$$

If f is a derivation with respect to $[-,-]$, then $f \in \operatorname{Der}_{\omega}(\mathcal{A})$.
Proof. One has

$$
\begin{gathered}
f\left(\omega\left(x_{1}, \cdots, x_{n}\right)\right)=f\left(\left[x_{1},\left[x_{2}, \cdots,\left[x_{n-1}, x_{n}\right] \cdots\right]\right]\right) \\
\left.=\left[f\left(x_{1}\right),\left[x_{2}, \cdots,\left[x_{n-1}, x_{n}\right] \cdots\right]\right]\right)+\left[x_{1}, f\left(\left[x_{2}, \cdots,\left[x_{n-1}, x_{n}\right] \cdots\right]\right)\right]= \\
=\sum_{i}\left[x_{1}, \cdots,\left[f\left(x_{i}\right), \cdots, x_{n}\right]\right]=\sum_{i} \omega\left(x_{1}, \cdots, f\left(x_{i}\right), \cdots, x_{n}\right) .
\end{gathered}
$$

The following is an immediate generalization of Proposition 2.2. Since it has the same proof, we omit it here.

Proposition 2.3 Let $\omega_{i}: \mathcal{A}^{\otimes n_{i}} \rightarrow \mathcal{A}$ be n_{i}-ary operations for $i=1, \ldots, k$ and let $\omega: \mathcal{A}^{\otimes k} \rightarrow \mathcal{A}$ be a k-ary operation. If f is a derivation with respect to $\omega_{1}, \ldots, \omega_{n}, \omega$, then it is also a derivation with respect to the composite $\sigma: \mathcal{A}^{\otimes n} \rightarrow \mathcal{A}$. Here $n=n_{1}+\ldots+n_{k}$,

$$
\sigma\left(a_{1}, \ldots, a_{n}\right):=\omega\left(\omega_{1}\left(a_{1}, \ldots, a_{n_{1}}\right), \ldots, \omega_{k}\left(a_{s}, \ldots, a_{n}\right)\right)
$$

and $s=n-n_{k}+1=n_{1}+\ldots+n_{k-1}+1$.
Proposition 2.4 Let $\omega: \mathcal{A}^{\otimes(n+1)} \rightarrow \mathcal{A}$ be an $(n+1)$-linear map and let $\mu_{i}: \mathrm{g} \otimes \mathrm{g} \rightarrow \mathrm{g}$ be the bilinear map given by
$\mu_{i}\left(a_{1} \otimes \ldots \otimes a_{n}, b_{1} \otimes \ldots \otimes b_{n}\right)=a_{1} \otimes \cdots \otimes \omega\left(a_{i}, b_{1} \otimes \ldots \otimes b_{n}\right) \otimes \cdots \otimes a_{n}$.
Here $\mathrm{g}=\mathcal{A}^{\otimes n}$ and $1 \leq i \leq n$. Suppose that $f: \mathcal{A} \rightarrow \mathcal{A}$ is an ω-derivation and $\varphi: \mathrm{g} \rightarrow \mathrm{g}$ is given by

$$
\varphi\left(a_{1} \otimes \ldots \otimes a_{n}\right)=\sum_{j=1}^{n} a_{1} \otimes \ldots \otimes f\left(a_{j}\right) \otimes \cdots \otimes a_{n}
$$

Then φ is a derivation with respect to μ_{i}, for any $1 \leq i \leq n$.
Proof. One has

$$
\varphi\left(\mu_{i}\left(a_{1} \otimes \ldots \otimes a_{n}, b_{1} \otimes \ldots \otimes b_{n}\right)\right)=\varphi\left(a_{1} \otimes \cdots \otimes \omega\left(a_{i}, b_{1} \otimes \ldots \otimes b_{n}\right) \otimes \cdots \otimes a_{n}\right) .
$$

Since f is an ω-derivation, we see that this expression is equal to

$$
\begin{aligned}
& f\left(a_{1}\right) \otimes \cdots \otimes \omega\left(a_{i}, b_{1} \otimes \ldots \otimes b_{n}\right) \otimes \cdots \otimes a_{n}+\cdots+ \\
& \quad+a_{1} \otimes \cdots \otimes \omega\left(f\left(a_{i}\right), b_{1} \otimes \cdots \otimes b_{n}\right) \otimes \cdots \otimes a_{n}+
\end{aligned}
$$

$$
\begin{aligned}
& +a_{1} \otimes \cdots \otimes \omega\left(a_{i}, f\left(b_{1}\right) \otimes \ldots \otimes b_{n}\right) \otimes \cdots \otimes a_{n}+\cdots+ \\
& +a_{1} \otimes \cdots \otimes \omega\left(a_{i}, b_{1} \otimes \ldots \otimes f\left(b_{n}\right)\right) \otimes \cdots \otimes a_{n}+\cdots+ \\
& \quad+a_{1} \otimes \cdots \otimes \omega\left(a_{i}, b_{1} \otimes \ldots \otimes b_{n}\right) \otimes \cdots \otimes f\left(a_{n}\right) .
\end{aligned}
$$

On the other hand the expression

$$
\mu_{i}\left(\varphi\left(a_{1} \otimes \ldots \otimes a_{n}\right), b_{1} \otimes \ldots \otimes b_{n}\right)+\mu_{i}\left(a_{1} \otimes \ldots \otimes a_{n}, \varphi\left(b_{1} \otimes \ldots \otimes b_{n}\right)\right)
$$

is clearly equal to the previous expression thanks to the definition of μ_{i} and φ. This proves that φ is a derivation with respect to μ_{i}.

3. Leibniz n-algebras

A Leibniz algebra of order n, or simply a Leibniz n-algebra, is a vector space \mathcal{L} equipped with an n-linear operation $[-, \ldots,-]: \mathcal{L}^{\otimes n} \rightarrow \mathcal{L}$ such that for all x_{1}, \ldots, x_{n-1} the map $a d\left(x_{1}, \ldots, x_{n-1}\right): \mathcal{L} \rightarrow \mathcal{L}$ given by $\operatorname{ad}\left(x_{1}, \cdots, x_{n-1}\right)(x)=\left[x, x_{1}, \ldots, x_{n-1}\right]$ is a derivation with respect to $[-, \ldots,-]$. This means that the following Leibniz n-identity holds:

$$
\begin{equation*}
\left[\left[x_{1}, x_{2}, \ldots, x_{n}\right], y_{1}, y_{2}, \ldots, y_{n-1}\right]= \tag{3.1}
\end{equation*}
$$

$$
\sum_{i=1}^{n}\left[x_{1}, \ldots, x_{i-1},\left[x_{i}, y_{1}, y_{2}, \ldots, y_{n-1}\right], x_{i+1}, \cdots, x_{n}\right]
$$

We let ${ }_{n} \mathbf{L} \mathbf{b}$ be the category of Leibniz n-algebras. Let us observe that for $n=2$ the identity (3.1) is equivalent to (1.1). So a Leibniz 2-algebra is simply a Leibniz algebra in the sense of [4], and so Leibniz 2-algebras are called just Leibniz algebras, and we use $\mathbf{L b}$ instead of ${ }_{2} \mathbf{L b}$.

Clearly a Lie algebra is a Leibniz algebra such that $[x, x]=0$ holds. Similarly for $n \geq 3$ an n-Lie or an n-Nambu-Lie algebra is a Leibniz n algebra such that $\left[x_{1}, \ldots, x_{i}, x_{i+1}, \ldots, x_{n}\right]=0$ as soon as $x_{i}=x_{i+1}$ for $1 \leq i \leq n-1$. Such algebras appear in the so called Nambu mechanics and there exists several interesting papers about them (see [1], [2] and references given there).

Another big class of Leibniz 3-algebras which were considered in the literature are the so called Lie triple systems. Let us recall that a Lie triple system [3] is a vector space equipped with a bracket $[-,-,-]$ that satisfies the same identity (3.1) and, instead of skew-symmetry, satisfies the conditions

$$
[x, y, z]+[y, z, x]+[z, x, y]=0
$$

and

$$
[x, y, y]=0
$$

Proposition 3.2 Let g be a Leibniz algebra. Then g is also a Leibniz $(n+1)$-algebra with respect to the operation $\omega: \mathrm{g}^{\otimes(n+1)} \rightarrow \mathrm{g}$ given by

$$
\omega\left(x_{0}, x_{1}, \cdots, x_{n}\right):=\left[x_{0},\left[x_{1}, \cdots\left[x_{n-1}, x_{n}\right]\right] .\right.
$$

Proof. From the definition of Leibniz algebra we know that

$$
a d(x)=[-, x]: \mathrm{g} \rightarrow \mathrm{~g}
$$

is a derivation with respect to 2-bracket. By Proposition 2.2 we know that it is also a derivation with respect to ω. Since for all $x_{1}, x_{2}, \cdots, x_{n} \in \mathrm{~g}$ one has $a d\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left[x_{1}, \cdots\left[x_{n-1}, x_{n}\right] \cdots\right]$ the Proposition follows. Here $a d\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\omega\left(-, x_{1}, x_{2}, \cdots, x_{n}\right): \mathrm{g} \rightarrow \mathrm{g}$.

Proposition 3.2 shows that there exists a "forgetful" functor

$$
\mathbf{U}_{n}: \mathbf{L b} \rightarrow{ }_{n} \mathbf{L b}
$$

Here are more examples of Leibniz 3-algebras.
Examples 3.3 i) Let g be a Leibniz algebra with involution σ. This means that σ is an automorphism of g and $\sigma^{2}=i d$. Then

$$
\mathcal{L}:=\{x \in \mathrm{~g} \mid x+\sigma(x)=0\}
$$

is a Leibniz 3-algebra with respect to the bracket

$$
[x, y, z]:=[x,[y, z]] .
$$

ii) Let V be a 4 -dimensional vector space with basis i, j, k, l. Then we define $[x, y, z]:=\operatorname{det}(A)$, where A is the following matrix

$$
\left(\begin{array}{cccc}
i & j & k & l \\
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4}
\end{array}\right)
$$

One sees that this gives rise to a Leibniz 3-algebra. Moreover it is a NambuLie algebra. Here $x=x_{1} i+x_{2} j+x_{3} k+x_{4} l$ and so on. One easily generalizes this example to obtain an n-Nambu-Lie algebra starting with an
$(n+1)$-dimensional vector space. This example was a starting point for investigating n-Lie (or Nambu-Lie) algebras.

Let \mathcal{L} be a Leibniz n-algebra. Thanks to Proposition 2.1 i) we know that

$$
\operatorname{Der}(\mathcal{L})=\{f: \mathcal{L} \rightarrow \mathcal{L} \mid f \text { is a derivation }\}
$$

is a Lie algebra.
Proposition 3.4. Let \mathcal{L} be a Leibniz $(n+1)$-algebra. Then $\mathcal{D}_{n}(\mathcal{L})=\mathcal{L}^{\otimes n}$ is a Leibniz algebra with respect to the bracket

$$
\left[a_{1} \otimes \cdots \otimes a_{n}, b_{1} \otimes \cdots \otimes b_{n}\right]:=\sum_{i=1}^{n} a_{1} \otimes \cdots \otimes\left[a_{i}, b_{1}, \cdots, b_{n}\right] \otimes \cdots \otimes a_{n}
$$

Moreover

$$
a d: \mathcal{L}^{\otimes n} \rightarrow \operatorname{Der}(\mathcal{L}), \quad x_{1} \otimes \cdots \otimes x_{n} \mapsto a d\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

is a homomorphism of Leibniz algebras.
Proof. Fix $x_{1}, \cdots, x_{n} \in \mathcal{L}$. We have to prove that

$$
\varphi: \mathcal{D}_{n}(\mathcal{L}) \rightarrow \mathcal{D}_{n}(\mathcal{L})
$$

given by

$$
\varphi\left(a_{1} \otimes \ldots \otimes a_{n}\right)=\sum_{j=1}^{n} a_{1} \otimes \ldots \otimes f\left(a_{j}\right) \otimes \cdots \otimes a_{n}
$$

is a derivation with respect to $[-,-]$. Here $f=\left[-, x_{1}, \cdots, x_{n}\right]: \mathcal{L} \rightarrow \mathcal{L}$. Thanks to Proposition 2.4 we know that φ is a derivation with respect of all $\mu_{i}, 1 \leq i \leq n$, where
$\mu_{i}\left(a_{1} \otimes \ldots \otimes a_{n}, b_{1} \otimes \ldots \otimes b_{n}\right)=a_{1} \otimes \cdots \otimes \omega\left(a_{i}, b_{1} \otimes \ldots \otimes b_{n}\right) \otimes \cdots \otimes a_{n}$.
Then φ is also a derivation with respect to $[-,-]=\sum_{i=1}^{n} \mu_{i}$ thanks to Proposition 2.1 ii) and the first part of the Proposition follows. Let us show that $a d$ is a homomorphism of Leibniz algebras. Indeed, one sees that
$a d\left(\left[a_{1} \otimes \cdots \otimes a_{n}, b_{1} \otimes \cdots \otimes b_{n}\right]\right)(a)=\sum_{i=1}^{n}\left[a,\left[a_{1}, \cdots,\left[a_{i}, b_{1}, \cdots, b_{n}\right], \cdots, a_{n}\right]\right]$.

On the other hand

$$
\begin{aligned}
& {\left[\operatorname{ad}\left(a_{1} \otimes \cdots \otimes a_{n}\right), a d\left(b_{1} \otimes \cdots \otimes b_{n}\right)\right](a)=} \\
& =a d\left(a_{1} \otimes \cdots \otimes a_{n}\right) \operatorname{ad}\left(b_{1} \otimes \cdots \otimes b_{n}\right)(a)-a d\left(b_{1} \otimes \cdots \otimes b_{n}\right) \operatorname{ad}\left(a_{1} \otimes \cdots \otimes a_{n}\right)(a) \\
& \quad=\left[\left[a,\left[b_{1}, \cdots, b_{n}\right]\right], a_{1} \otimes \cdots \otimes a_{n}\right]-\left[\left[a, a_{1} \otimes \cdots \otimes a_{n}\right], b_{1}, \cdots, b_{n}\right] .
\end{aligned}
$$

Therefore (3.1) shows that

$$
a d\left(\left[a_{1} \otimes \cdots \otimes a_{n}, b_{1} \otimes \cdots \otimes b_{n}\right]\right)=\left[a d\left(a_{1} \otimes \cdots \otimes a_{n}\right), a d\left(b_{1} \otimes \cdots \otimes b_{n}\right)\right] .
$$

Hence $a d: \mathcal{D}_{n} \mathcal{L} \rightarrow \operatorname{Der}(\mathcal{L})$ is a homomorphism of Leibniz algebras.
Remark 3.5 One can prove that if \mathcal{A} is a Leibniz $(k n+1)$-algebra, then $\mathcal{A}^{\otimes k}$ is a Leibniz $(n+1)$-algebra with respect to the following bracket

$$
\begin{gathered}
{\left[x_{01} \otimes x_{02} \ldots \otimes x_{0 k}, \ldots, x_{n 1} \otimes x_{n 2} \ldots \otimes x_{n k}\right]:=} \\
{\left[x_{01}, x_{11}, \ldots, x_{1 k}, \ldots, x_{n 1}, \ldots, x_{n k}\right] \otimes x_{02} \otimes \ldots \otimes x_{0 k}+} \\
\ldots+x_{01} \otimes \ldots \otimes x_{0 k-1} \otimes\left[x_{0 k}, x_{11}, \ldots, x_{n k}\right]
\end{gathered}
$$

By Proposition 3.4 the $\operatorname{map} \mathcal{L} \mapsto \mathcal{D}_{n}(\mathcal{L})$ from Leibniz $(n+1)$-algebras to Leibniz algebras is a functor that we denote by \mathcal{D}_{n}. More generally, by Remark 3.5, there exist functors $\mathcal{D}_{k n}^{n}:{ }_{k n+1} \mathbf{L b} \rightarrow{ }_{n+1} \mathbf{L b}\left(\right.$ so $\left.\mathcal{D}_{n}=\mathcal{D}_{n}^{1}\right)$ and we have $\mathcal{D}_{n}^{1} \circ \mathcal{D}_{k n}^{n}=\mathcal{D}_{k n}^{1}$.

4. The main theorem

The goal of this section is to prove that the functor $\mathcal{D}_{n}:{ }_{n+1} \mathbf{L b} \rightarrow \mathbf{L b}$ sends free objects to free objects. For more specific statements see Theorem 4.4 and Theorem 4.8 below. Since \mathcal{D}_{1} is nothing but the identity functor, we have to consider the case $n \geq 2$. To avoid long formulas we will first restrict ourself to the case $n=2$ and, second, we indicate how to modify the argument for $n \geq 3$.

Let us recall (see [8]) that a magma \mathcal{M} is a set together with a map (binary operation)

$$
\mathcal{M} \times \mathcal{M} \rightarrow \mathcal{M}, \quad(x, y) \mapsto x \star y
$$

Let Y be the free magma with one generator e. We recall from [8] the construction of Y. First one defines the sequence of sets $\left(Y_{m}\right)_{m \geq 1}$ as follows:

$$
Y_{1}=\{e\}, \quad Y_{m}=\coprod_{p+q=m} Y_{p} \times Y_{q}, \quad(m \geq 2 ; p, q \geq 1)
$$

We let Y be the disjoint union

$$
Y=\coprod_{m \geq 1} Y_{m}
$$

One defines $\star: Y \times Y \rightarrow Y$ by means of

$$
Y_{p} \times Y_{q} \rightarrow Y_{p+q} \subseteq Y
$$

Then Y is a magma, which is freely generated by e. Let C_{m} be the number of elements of Y_{m+1}. Clearly $C_{0}=1, C_{1}=1$ and

$$
C_{m+1}=\sum_{i+j=m} C_{i} C_{j}
$$

Hence the function $f(t)=\sum_{m=0}^{\infty} C_{m} t^{m}$ satisfies the functional equation

$$
\begin{equation*}
f(t)-1=t f^{2}(t) \tag{4.1}
\end{equation*}
$$

Of course this equation is well known, as well as the fact that C_{m} is equal to the Catalan number, that is

$$
C_{m}=\frac{(2 m)!}{m!(m+1)!}
$$

So one has

$$
C_{0}=1, C_{1}=1, C_{2}=2, C_{3}=5, C_{4}=14, C_{5}=42, C_{6}=132, \ldots
$$

If $\omega \in Y_{m}$, then we say that ω is of length m and we write $l(\omega)=m$. Clearly if $\omega \in Y$, then $\omega=e$ or $\omega=\omega_{1} \star \omega_{2}$, with unique $\left(\omega_{1}, \omega_{2}\right) \in Y \times Y$. Moreover $l(\omega)=l\left(\omega_{1}\right)+l\left(\omega_{2}\right)$. Recall that the elements of Y_{n} can be interpreted as planar binary trees with n leaves. Under this interpretation the operation * is simply the grafting operation (join the roots to a new vertex and add a new root).

The following proposition is the analogue for Leibniz 3-algebras of Lemma 1.3 in [5] concerning Leibniz algebras.

Proposition 4.2 Let $K[Y]$ be the vector space spanned by Y. Then there exists a unique structure of Leibniz 3-algebra on $K[Y]$ such that

$$
\left[\omega_{1}, \omega_{2}, e\right]=\omega_{1} \star \omega_{2}
$$

Moreover $K[Y]$ with this structure is a free Leibniz 3-algebra generated by e.

Proof. We use the method devised in [5] for the case of Leibniz algebras. Let us observe that (3.1) for Leibniz 3-algebras is equivalent to

$$
\begin{equation*}
[a, b,[c, x, y]]=[[a, b, c], x, y]-[[a, x, y], b, c]-[a,[b, x, y], c] \tag{4.2.1}
\end{equation*}
$$

The 3 -bracket $\left[\omega_{1}, \omega_{2}, \omega_{3}\right]$ has been already defined for $\omega_{3}=e$. If $\omega_{3} \neq e$, then it is of the form $\omega \star \omega^{\prime}$ for some elements ω and ω^{\prime}. Hence

$$
\left[\omega_{1}, \omega_{2}, \omega_{3}\right]=\left[\omega_{1}, \omega_{2}, \omega \star \omega^{\prime}\right]=\left[\omega_{1}, \omega_{2},\left[\omega, \omega^{\prime}, e\right]\right]
$$

and one can use (4.2.1) to rewrite it with 3-brackets whose last variable is either ω or ω^{\prime}. Since $l(\omega)$ and $l\left(\omega^{\prime}\right)$ are less than $l\left(\omega_{3}\right)$, we get, by recursivity, the element $\left[\omega_{1}, \omega_{2}, \omega_{3}\right]$ as a unique algebraic sum of elements in Y.

We now have to prove that, with this definition, the 3-bracket satisfies the Leibniz 3-identity (4.2.1). Clearly it holds when $y=e$, since it is precisely this formula which was used to compute the left part. So we can work by induction with respect to $l(y)$. If $l(y) \geq 2$ then $y=y_{1} \star y_{2}$ and therefore

$$
\begin{aligned}
& {[a, b,[c, x, y]]=\left[a, b,\left[c, x,\left[y_{1}, y_{2}, e\right]\right]\right]=} \\
& {\left[a, b,\left[\left[c, x, y_{1}\right], y_{2}, e\right]\right]-\left[a, b,\left[\left[c, y_{2}, e\right], x, y_{1}\right]\right]-\left[a, b,\left[c,\left[x, y_{2}, e\right], y_{1}\right]\right] } \\
&= {\left[\left[a, b,\left[c, x, y_{1}\right]\right], y_{2}, e\right]-\left[\left[a, y_{2}, e\right], b,\left[c, x, y_{1}\right]\right]-\left[a,\left[b, y_{2}, e\right],\left[c, x, y_{1}\right]\right]-} \\
& {\left[\left[a, b,\left[c, y_{2}, e\right]\right], x, y_{1}\right]+\left[\left[a, x, y_{1}\right], b,\left[c, y_{2}, e\right]\right]+\left[a,\left[b, x, y_{1}\right],\left[c, y_{2}, e\right]\right]-} \\
& {\left[\left[[a, b, c],\left[x, y_{2}, e\right], y_{1}\right]+\left[\left[a,\left[x, y_{2}, e\right], y_{1}\right], b, c\right]-\left[a,\left[b,\left[x, y_{2}, c\right], y_{1}\right], c\right]=\right.} \\
& {\left.\left[[a, b, c], x, y_{1}\right], y_{2}, e\right]-\left[\left[\left[a, x, y_{1}\right], b, c\right], y_{2}, e\right]-\left[\left[a,\left[b, x, y_{1}\right], c\right], y_{2}, e\right] } \\
&- {\left[\left[\left[a, y_{2}, e\right], b, c\right], x, y_{1}\right]+\left[\left[\left[a, y_{2}, e\right], x, y_{1}\right], b, c\right]+\left[\left[a, y_{2}, e\right],\left[b, x, y_{1}\right], c\right] } \\
&- {\left[\left[a,\left[b, y_{2}, e\right], c\right], x, y_{1}\right]+\left[\left[a, x, y_{1}\right],\left[b, y_{2}, e\right], c\right]+\left[a,\left[\left[b, y_{2}, e\right], x, y_{1}\right], c\right] } \\
&- {\left[\left[[a, b, c], y_{2}, e\right], x, y_{1}\right]+\left[\left[\left[a, y_{2}, e\right], b, c\right], x, y_{1}\right]+\left[\left[a,\left[b, y_{2}, e\right], c\right], x, y_{1}\right] } \\
&+ {\left[\left[\left[a, x, y_{1}\right], b, c\right], y_{2}, e\right]-\left[\left[\left[a, x, y_{1}\right], y_{2}, e\right], b, c\right]-\left[\left[a, x, y_{1}\right],\left[b, y_{2}, e\right], c\right] } \\
&+ {\left[\left[a,\left[b, x, y_{1}\right], c\right], y_{2}, e\right]-\left[\left[a, y_{2}, e\right],\left[b, x, y_{1}\right], c\right]-\left[a,\left[\left[b, x, y_{1}\right], y_{2}, e\right], c\right] } \\
&- {\left[[a, b, c],\left[x, y_{2}, e\right], y_{1}\right]+\left[\left[a,\left[x, y_{2}, e\right], y_{1}\right], b, c\right]+\left[a,\left[b,\left[x, y_{2}, e\right], y_{1}\right], c\right] . }
\end{aligned}
$$

One sees that $2^{\text {nd }}$ and $13^{\text {th }}$, as well as $3^{\text {rd }}$ and $16^{\text {th }}, 4^{\text {th }}$ and $11^{\text {th }}, 6^{\text {th }}$ and $17^{t h}, 7^{\text {th }}$ and $12^{t h}, 8^{\text {th }}$ and $15^{\text {th }}$ terms cancel. Hence we have

$$
\begin{gathered}
{[a, b,[c, x, y]]=} \\
{\left[\left[[a, b, c], x, y_{1}\right], y_{2}, e\right]+\left[\left[\left[a, y_{2}, e\right], x, y_{1}\right], b, c\right]+\left[a,\left[\left[b, y_{2}, e\right], x, y_{1}\right], c\right]} \\
-\left[\left[[a, b, c], y_{2}, e\right], x, y_{1}\right]-\left[\left[\left[a, x, y_{1}\right], y_{2}, e\right], b, c\right]-\left[a,\left[\left[b, x, y_{1}\right], y_{2}, e\right], c\right] \\
-\left[[a, b, c],\left[x, y_{2}, e\right], y_{1}\right]+\left[\left[a,\left[x, y_{2}, e\right], y_{1}\right], b, c\right]+\left[a,\left[b,\left[x, y_{2}, e\right], y_{1}\right], c\right] .
\end{gathered}
$$

On the other hand we have

$$
\begin{gathered}
{[[a, b, c], x, y]=} \\
{\left[\left[[a, b, c], x, y_{1}\right], y_{2}, e\right]-\left[\left[[a, b, c], y_{2}, e\right], x, y_{1}\right]-\left[[a, b, c],\left[x, y_{2}, e\right], y_{1}\right]}
\end{gathered}
$$

Similarly

$$
-[[a, x, y], b, c]=
$$

$$
-\left[\left[\left[a, x, y_{1}\right], y_{2}, e\right], b, c\right]+\left[\left[\left[a, y_{2}, e\right], x, y_{1}\right], b, c\right]+\left[\left[a,\left[x, y_{2}, e\right], y_{1}\right], b, c\right]
$$

and

$$
\begin{gathered}
-[a,[b, x, y], c]= \\
-\left[a,\left[\left[b, x, y_{1}\right], y_{2}, e\right], c\right]+\left[a,\left[\left[b, y_{2}, e\right], x, y_{1}\right], c\right]+\left[a,\left[b,\left[x, y_{2}, e\right], y_{1}\right], c\right]
\end{gathered}
$$

One checks that after substitution in (3.1) all terms cancel and therefore $K[Y]$ has a well defined structure of Leibniz 3-algebra. If \mathcal{L} is any Leibniz 3 -algebra and $x \in \mathcal{L}$, then by induction one can check that there exists a unique homomorphism

$$
f: K[Y] \rightarrow \mathcal{L}
$$

such that $f(e)=x$ and Proposition 4.2 is proved.
Now we can formulate the following
Theorem 4.3. The vector space spanned by the set $\bar{Y}=Y-\{e\}$ has a unique Leibniz algebra structure such that

$$
[x \star y, z \star e]=(x \star z) \star y+x \star(y \star z)
$$

It is a free Leibniz algebra over the set $Y^{\prime}=\{x \star e \mid x \in Y\} \subset \bar{Y}$. Moreover one has isomorphisms of Leibniz algebras

$$
\mathcal{D}_{2}(K[Y]) \cong K[\bar{Y}] \cong T\left(K\left[Y^{\prime}\right]\right)
$$

Proof. $1^{\text {st }}$ Step: Uniqueness. Assume that such a Leibniz algebra structure exists. Then $a d(u)=[-, u]$ is uniquely determined when $u=x \star e$. We will prove by induction on $l(q)$ that $a d(u)$ is uniquely determined when $u=x \star q$. If $l(q)>1$, then $q=y \star z$ and by assumption

$$
u=[x \star y, z \star e]-(x \star z) \star y
$$

Therefore

$$
\begin{gathered}
a d(u)=-a d((x \star z) \star y)+a d[x \star y, z \star e]= \\
=-a d((x \star z) \star y)+a d(z \star e) \cdot a d(x \star y)-a d(x \star y) \cdot a d(z \star e)
\end{gathered}
$$

and by induction assumption $a d(u)$ is uniquely determined.
$2^{\text {nd }}$ Step: Bijection. There is a linear isomorphism $K[Y] \otimes K[Y] \cong K[\bar{Y}]$, which is given by

$$
(x, y) \mapsto x \star y, \text { for } x, y \in Y
$$

It yields indeed a bijection because

$$
\begin{aligned}
& K[Y] \otimes K[Y] \cong \bigoplus_{p, q \geq 1} K\left[Y_{p}\right] \otimes K\left[Y_{q}\right] \cong \bigoplus_{p, q \geq 1} K\left[Y_{p} \times Y_{q}\right] \\
& \quad \cong \bigoplus_{m \geq 2} \bigoplus_{p+q=m} K\left[Y_{p} \times Y_{q}\right] \cong \bigoplus_{m \geq 2} K\left[Y_{m}\right]=K[\bar{Y}]
\end{aligned}
$$

$3^{\text {rd }}$ Step: Algebra isomorphism $\mathcal{D}_{2}(K[Y]) \cong K[\bar{Y}]$. Let us consider $K[\bar{Y}]$ as a Leibniz algebra induced by the linear isomorphism from Step 2. Since $x \star y$ and $z \star e$ are the images of $x \otimes y$ and $z \otimes e \in K[Y] \otimes K[Y]$ under the isomorphism of Step 2, we have to show that, in this algebra, the following identity

$$
[x \star y, z \star e]=(x \star z) \star y+x \star(y \star z)
$$

holds. By definition of the functor \mathcal{D}_{2} one has

$$
[x \otimes y, z \otimes e]=[x, z, e] \otimes y+x \otimes[y, z, e]=(x \star z) \otimes y+x \otimes(y \star z)
$$

and this element goes to $(x \star z) \star y+x \star(y \star z)$ under the isomorphism of Step 2. This proves also the existence part of the Theorem.
$4^{\text {th }}$ Step: Y^{\prime} generates $K[\bar{Y}]$. Indeed let X be the subalgebra of $K[\bar{Y}]$ generated by Y^{\prime}. We have to prove that $\bar{Y} \subset X$. Let $x \star y$ be an element in
\bar{Y}. We will show by induction on $l(y)$ that $x \star y \in X$. When $l(y)=1$, then $x \star y=x \star e \in Y^{\prime} \subset X$. If $l(y)>1$ then $y=y_{1} \star z$ and by the assumption

$$
x \star y=-(x \star z) \star y_{1}+\left[x \star y_{1}, z \star e\right] .
$$

But, by the induction assumption, one has $(x \star z) \star y_{1}, x \star y_{1}, z \star e \in X$. Therefore $x \star y \in X$ as well.
$5^{\text {th }}$ Step: $K[\bar{Y}]$ as a graded Leibniz algebra. For $x \in \bar{Y}$ we let $d(x)$ to be $l(x)-1$. Then $K[\bar{Y}]$ can be considered as a graded vector space by declaring that the degree of an element $x \in \bar{Y}$ is $d(x)$. We claim that under this grading $K[\bar{Y}]$ is a graded Leibniz algebra, that is, if $d(x)=k$ and $d(y)=m$, then $[x, y]$ is a linear combination of elements of degree $k+m$. The claim is clear when $y=x^{\prime} \star y^{\prime}$ and $l\left(y^{\prime}\right)=1$ and it can be proved by the same induction arguments as in Step 1.
$6^{\text {th }}$ Step: Y^{\prime} freely generates $K[\bar{Y}]$. Let us recall from [5] that for a vector space U the free Leibniz algebra generated by U is the unique Leibniz algebra structure on

$$
\bar{T}(U)=\bigoplus_{m \geq 1} U^{\otimes m}
$$

such that for any $u \in U$ one has

$$
[x, u]=x \otimes u, x \in \bar{T}(U) .
$$

Take $U=K\left[Y^{\prime}\right]$. Then we obtain the natural epimorphism

$$
\varphi: \bar{T}\left(K\left[Y^{\prime}\right]\right) \rightarrow K[\bar{Y}] .
$$

We have to show that φ is injective. The vector space $K\left[Y^{\prime}\right]$ is a graded subspace of $K[\bar{Y}]$. Therefore $\bar{T}\left(K\left[Y^{\prime}\right]\right)$ is also graded and φ is a morphism of graded Leibniz algebras. Since each component is of finite dimension, it is enough to show that the degree p part of $\bar{T}\left(K\left[Y^{\prime}\right]\right)$ and $K[\bar{Y}]$ have the same dimension.

The dimension of the degree p part of $K[\bar{Y}]$ is equal to C_{p} (Catalan number), while the dimension of the degree p part of $\bar{T}\left(K\left[Y^{\prime}\right]\right)$ is equal to the coefficient of t^{p} in the expansion of

$$
g(t)=\sum_{m=1}^{\infty}\left(\sum_{k=1}^{\infty} C_{k-1} t^{k}\right)^{m},
$$

because the degree m part of $K\left[Y^{\prime}\right]$ is of dimension C_{m-1}. Hence we have to prove that $g(t)=f(t)-1$. But

$$
g(t)=\sum_{m=1}^{\infty}(t f(t))^{m}=\frac{t f(t)}{1-t f(t)}
$$

and it is equal to $f(t)-1$, thanks to (4.1).
Let us now show the following parametrized version of Theorem 4.3.
Theorem 4.4. Let V be a vector space, and put

$$
F(V):=\bigoplus_{m \geq 1} K\left[Y_{m}\right] \otimes V^{\otimes 2 m-1}
$$

(i) There exists a unique Leibniz 3-algebra structure on $F(V)$ such that

$$
\left[\omega_{1} \otimes x_{1}, \omega_{2} \otimes x_{2}, e \otimes x\right]=\left(\omega_{1} \star \omega_{2}\right) \otimes x_{1} \otimes x_{2} \otimes x
$$

where $\omega_{1} \in K\left[Y_{p}\right], x_{1} \in V^{\otimes(2 p-1)}, \omega_{2} \in K\left[Y_{q}\right], x_{2} \in V^{\otimes(2 q-1)}$ and $x \in V$.
(ii) Equipped with this structure $F(V)$ is a free Leibniz 3-algebra generated by V.
(iii) The Leibniz algebra $\mathcal{D}_{2}(F(V))$ is isomorphic to the free Leibniz algebra generated by the vector space

$$
E=\bigoplus_{m \geq 1} K\left[Y_{m}\right] \otimes V^{\otimes 2 m} .
$$

Proof. The proof is similar to the proof of Theorem 4.2. At the end, in order to show that the vector spaces $F(V)$ and $T(E)$ have the same dimension we use the following identity of formal power series:

$$
\left(x+x^{3}+2 x^{5}+5 x^{7}+14 x^{9}+\cdots\right)^{2}=\sum_{m=1}^{\infty}\left(x^{2}+x^{4}+2 x^{6}+5 x^{8}+14 x^{10}+\cdots\right)^{m},
$$

which is an immediate consequence of the functional equation (4.1).
Let us now state the results for $(n+1)$-Leibniz algebras. Since the proofs follow the same pattern as in the case $n+1=2+1$, we mention only the main modifications. By definition an n-magma is a set \mathcal{M} together with a map (n-ary operation)

$$
(-, \cdots,-): \underbrace{\mathcal{M} \times \cdots \times \mathcal{M}}_{n \text { copies }} \rightarrow \mathcal{M} .
$$

Let Z be the free n-magma with one generator e. It can be described as follows. The sequence of sets $\left(Z_{m}\right)_{m \geq 1}$ is given by:

$$
Z_{1}=\{e\}, \quad Z_{m}=\coprod_{p_{1}+\cdots+p_{n}=m} Z_{p_{1}} \times \cdots \times Z_{p_{n}}, \quad\left(m \geq 2 ; p_{i} \geq 1\right)
$$

Observe that $Z_{m}=\emptyset$ unless $m=(n-1) k+1$ for some $k \geq 0$. We let Z be the disjoint union

$$
Z=\coprod_{m \geq 1} Z_{m}
$$

One defines $(-, \cdots,-): Z \times \cdots \times Z \rightarrow Z$ by means of

$$
Z_{(n-1) k_{1}+1} \times \cdots \times Z_{(n-1) k_{n}+1} \rightarrow Z_{(n-1)\left(k_{1}+\cdots+k_{n}+1\right)+1} \subseteq Z
$$

Then Z is a n-magma, which is freely generated by e. Let D_{k} be the number of elements of $Z_{(n-1) k+1}$. Clearly $D_{0}=1, D_{1}=1$ and

$$
D_{k+1}=\sum_{k_{1}+\cdots+k_{n}=k} D_{k_{1}} \cdots D_{k_{n}}
$$

Hence the function $f(t)=\sum_{k=0}^{\infty} D_{k} t^{k}$ satisfies the functional equation

$$
\begin{equation*}
f(t)-1=t f(t)^{n} \tag{4.5}
\end{equation*}
$$

If $\omega \in Z_{(n-1) k+1}$, then we say that ω is of length k and we write $l(\omega)=k$. Clearly if $\omega \in Z$, then $\omega=e$ or $\omega=\left(\omega_{1}, \cdots, \omega_{n}\right)$, for some unique elements $\omega_{1}, \cdots, \omega_{n}$ in Z. Moreover $l(\omega)=l\left(\omega_{1}\right)+\cdots+l\left(\omega_{n}\right)+1$. Recall that the elements of Z_{m} can be interpreted as n-ary planar trees, that is each vertex has one root and n leaves. Under this interpretation the operation $(-, \cdots,-)$ is simply the grafting operation. Observe that the number of vertices (resp. edges) of a tree in $Z_{(n-1) k+1}$ is k (resp. $k n+1$).
Proposition 4.6 Let $K[Z]$ be the vector space spanned by Z. Then there exists a unique structure of $(n+1)$-Leibniz algebra on $K[Z]$ such that

$$
\left[\omega_{1}, \cdots, \omega_{n}, e\right]=\left(\omega_{1}, \cdots, \omega_{n}\right)
$$

Moreover $K[Z]$ with this structure is a free $(n+1)$-Leibniz algebra generated by e.
Theorem 4.7. The vector space spanned by the set $\bar{Z}=Z-\{e\}$ has a unique Leibniz algebra structure such that

$$
\left[\left(\omega_{1}, \cdots, \omega_{n}\right),\left(\omega_{1}^{\prime}, \cdots, \omega_{n-1}^{\prime}, e\right)\right]=\sum_{i=1}^{n}\left(\omega_{1}, \cdots,\left(\omega_{i}, \omega_{1}^{\prime}, \cdots, \omega_{n-1}^{\prime}\right), \cdots, \omega_{n}\right)
$$

As a Leibniz algebra it is free over the $Z^{\prime}=\left\{\left(\omega_{1}, \cdots, \omega_{n-1}, e\right) \mid \omega_{i} \in Z\right\}$. Moreover one has isomorphisms of Leibniz algebras:

$$
\mathcal{D}_{n}(K[Z]) \cong K[\bar{Z}] \cong T\left(K\left[Z^{\prime}\right]\right) .
$$

Proof. Let us just mention the computation of the dimensions of the vector spaces. Let E_{k} be the number of n-ary trees with k vertices which are of the form $\left(\omega_{1}, \cdots, \omega_{n-1}, e\right)$. One has

$$
E_{k}=\sum_{k_{1}+\cdots+k_{n-1}+1=k} D_{k_{1}} \times \cdots \times D_{k_{n-1}} .
$$

Hence we get $\sum E_{k} t^{k}=t \sum D_{k_{1}} t^{k_{1}} \cdots D_{k_{n-1}} t^{k_{n-1}}=t f(t)^{n-1}$. Therefore the generating series for $T\left(K\left[Z^{\prime}\right]\right)$ is $\frac{t f(t)^{n-1}}{1-t f(t)^{n-1}}$. By the functional equation (4.6) this is equal to $f(t)-1$, which is the generating series for $K[\bar{Z}]$.

Theorem 4.8. Let V be a vector space, and put

$$
F(V):=\bigoplus_{k \geq 0} K\left[Z_{(n-1) k+1}\right] \otimes V^{\otimes n k+1}
$$

(i) There exists a unique $(n+1)$-Leibniz algebra structure on $F(V)$ such that
$\left[\omega_{1} \otimes x_{1}, \cdots, \omega_{n} \otimes x_{n}, e \otimes x\right]=\left(\omega_{1}, \cdots, \omega_{n}\right) \otimes x_{1} \otimes \cdots \otimes x_{n} \otimes x$,
where $\omega_{i} \in K\left[Z_{(n-1) k_{i}+1}\right], x_{i} \in V^{\otimes n k_{i}+1}$ and $x \in V$.
(ii) Equipped with this structure $F(V)$ is a free $(n+1)$-Leibniz algebra generated by V.
(iii) The Leibniz algebra $\mathcal{D}_{n}(F(V))$ is isomorphic to the free Leibniz algebra generated by the vector space

$$
E=\bigoplus_{k \geq 0} K\left[Z_{(n-1) k+1}\right] \otimes V^{\otimes n(k+1)}
$$

Remark 4.9 By the same kind of argument one can show that the functor $\mathcal{D}_{k n}^{k}:_{k n+1} \mathbf{L b} \rightarrow_{k+1} \mathbf{L b}$ sends free objects to free objects.

5. Cohomology of Leibniz n-algebras

An abelian extension of Leibniz n-algebras

$$
\begin{equation*}
0 \rightarrow M \rightarrow \mathcal{K} \rightarrow \mathcal{L} \rightarrow 0 \tag{5.1}
\end{equation*}
$$

is an exact sequence of Leibniz n-algebras such that $\left[a_{1}, \cdots, a_{n}\right]=0$ as soon as $a_{i} \in M$ and $a_{j} \in M$ for some $1 \leq i \neq j \leq n$. Here $a_{1}, \cdots, a_{n} \in \mathcal{K}$. Clearly then M is an abelian Leibniz n-algebra, that is the bracket vanishes on M. Let us observe that the converse is true only for $n=2$.

If (5.1) is an abelian extension of Leibniz n-algebras, then M is equipped with n actions

$$
[-, \cdots,-]: \mathcal{L}^{\otimes i} \otimes M \otimes \mathcal{L}^{\otimes n-1-i} \rightarrow M, 0 \leq i \leq n-1
$$

satisfying ($2 n-1$) equations, which are obtained from (3.1) by letting exactly one of the variables $x_{1}, \cdots, x_{n}, y_{1}, \cdots y_{n-1}$ be in M and all the others in \mathcal{L}.

By definition a representation of the Leibniz n-algebra \mathcal{L} is a vector space M equipped with n actions of $[-, \cdots,-]: \mathcal{L}^{\otimes i} \otimes M \otimes \mathcal{L}^{\otimes n-1-i} \rightarrow M$ satisfying these $(2 n-1)$ axioms. For example \mathcal{L} is a representation of \mathcal{L}. The notion of representation of a Leibniz n-algebra for $n=2$ coincides with the corresponding notion given in [5]. Let \mathcal{L} be a Leibniz n-algebra and let M be a representation of \mathcal{L}. Let

$$
\begin{equation*}
0 \rightarrow M \rightarrow \mathcal{K} \rightarrow \mathcal{L} \rightarrow 0 \tag{K}
\end{equation*}
$$

be an abelian extension, such that the induced structure of representation of \mathcal{L} on M induced by the extension is the prescribed one. If this condition holds, then we say that we have an abelian extension of \mathcal{L} by M. Two such extensions (\mathcal{K}) and (\mathcal{K}^{\prime}) are isomorphic when there exists a Leibniz n-algebra map from \mathcal{K} to \mathcal{K}^{\prime} which is compatible with the identity on M and on \mathcal{L}. One denotes by $\operatorname{Ext}(\mathcal{L}, M)$ the set of isomorphism classes of extensions of \mathcal{L} by M.

Let $f: \mathcal{L}^{\otimes n} \rightarrow M$ be a linear map. We define an n-bracket on $\mathcal{K}=$ $M \oplus \mathcal{L}$ by

$$
\left[\left(m_{1}, x_{1}\right),\left(m_{2}, x_{2}\right) \cdots,\left(m_{n}, x_{n}\right)\right]:=
$$

$$
\left(\sum_{i=1}^{n}\left[x_{1}, \cdots, m_{i}, \cdots, x_{n}\right]+f\left(x_{1}, \cdots, x_{n}\right),\left[x_{1}, \cdots, x_{n}\right]\right)
$$

Then \mathcal{K} is a Leibniz n-algebra if and only if

$$
\begin{equation*}
\left.f\left(\left[x_{1}, \cdots, x_{n}\right], y_{1}, \cdots, y_{n-1}\right]\right)+\left[f\left(x_{1}, \cdots, x_{n}\right), y_{1}, \cdots, y_{n-1}\right]= \tag{5.2}
\end{equation*}
$$

$\sum_{i=1}^{n}\left(f\left(x_{1}, \cdots,\left[x_{i}, y_{1} \cdots, y_{n-1}\right], \cdots, x_{n}\right]+\left[x_{1}, \cdots, f\left(x_{i}, y_{1} \cdots, y_{n-1}\right), \cdots, x_{n}\right]\right)$
for all $x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n-1} \in \mathcal{L}$. If this condition holds, then we obtain an extension

$$
0 \rightarrow M \rightarrow \mathcal{K} \rightarrow \mathcal{L} \rightarrow 0
$$

of Leibniz n-algebras. Moreover this extension is split in the category of Leibniz n-algebras if and only if there exists a linear map $g: \mathcal{L} \rightarrow M$ such that

$$
\begin{equation*}
f\left(x_{1}, \cdots, x_{n}\right)=\sum_{i=1}^{n}\left[x_{1}, \cdots, g\left(x_{i}\right), \cdots, x_{n}\right]-g\left(\left[x_{1}, \cdots, x_{n}\right]\right) \tag{5.3}
\end{equation*}
$$

An easy consequence of these facts is the following natural bijection :

$$
\begin{equation*}
\operatorname{Ext}(\mathcal{L}, M) \cong Z(\mathcal{L}, M) / B(\mathcal{L}, M) \tag{5.4}
\end{equation*}
$$

Here $Z(\mathcal{L}, M)$ is the set of all linear maps $f: \mathcal{L}^{\otimes n} \rightarrow M$ satisfying (5.2) and $B(\mathcal{L}, M)$ is the set of such f which satisfy (5.3) for some k-linear map $g: \mathcal{L} \rightarrow M$.

Let \mathcal{L} be a Leibniz n-algebra and let M be a representation of \mathcal{L}. A map $f: \mathcal{L} \rightarrow M$ is called a derivation if

$$
f\left(\left[a_{1}, \cdots, a_{n}\right]\right)=\sum_{i=1}^{n}\left[a_{1}, \cdots, f\left(a_{i}\right), \cdots, a_{n}\right]
$$

We let $\operatorname{Der}(\mathcal{L}, M)$ be the vector space of all derivations from \mathcal{L} to M.
The next goal is to construct a cochain complex for Leibniz n-algebras so that the derivations and the elements of Z are cocycles in this complex. It turns out that this problem reduces to the case $n=2$, that is for Leibniz algebras, which was the subject of the paper [5]. Let us recall the main construction of [5]. Let g be a Leibniz algebra and let M be a representation of g . We let $C L^{*}(\mathrm{~g}, M)$ be a cochain complex given by

$$
C L^{m}(\mathrm{~g}, M):=\operatorname{Hom}\left(\mathrm{g}^{\otimes m}, M\right), m \geq 0
$$

where the coboundary operator $d^{m}: C L^{m}(\mathrm{~g}, M) \rightarrow C L^{m+1}(\mathrm{~g}, M)$ is defined by

$$
\begin{gathered}
\left(d^{m} f\right)\left(x_{1}, \cdots, x_{m+1}\right):=\left[x_{1}, f\left(x_{2}, \cdots, x_{m+1}\right)\right] \\
+\sum_{i=2}^{m+1}(-1)^{i}\left[f\left(x_{1}, \cdots, \hat{x}_{i}, \cdots, x_{m+1}\right), x_{i}\right] \\
+\sum_{1 \leq i<j \leq m}(-1)^{j+1} f\left(x_{1}, \cdots, x_{i-1},\left[x_{i}, x_{j}\right], x_{i+1}, \cdots, \hat{x}_{j}, \cdots, x_{m}\right)
\end{gathered}
$$

According to [5] cohomology of the Leibniz algebrag with coefficients in the representation M is defined by

$$
H L^{*}(\mathrm{~g}, M):=H^{*}\left(C L^{*}(\mathrm{~g}, M), d\right)
$$

In order to generalize this notion to Leibniz n-algebras for $n \geq 3$ we need the following Proposition. Let us recall that if \mathcal{L} is an $(n+1)$-Leibniz algebra, then the Leibniz algebra $\mathcal{D}_{n}(\mathcal{L})$ was defined in Section 3. Let \mathcal{L} be an $(n+1)$-Leibniz algebra and let M be a representation of \mathcal{L}. One defines the maps

$$
\begin{aligned}
& {[-,-]: \operatorname{Hom}(\mathcal{L}, M) \otimes \mathcal{D}_{n}(\mathcal{L}) \rightarrow \operatorname{Hom}(\mathcal{L}, M)} \\
& {[-,-]: \mathcal{D}_{n}(\mathcal{L}) \otimes \operatorname{Hom}(\mathcal{L}, M) \rightarrow \operatorname{Hom}(\mathcal{L}, M)}
\end{aligned}
$$

by

$$
\left[f, x_{1} \otimes \cdots \otimes x_{n}\right](x):=\left[f(x), x_{1}, \cdots, x_{n}\right]-f\left(\left[x, x_{1}, \cdots, x_{n}\right]\right)
$$

$\left[x_{1} \otimes \cdots \otimes x_{n}, f\right](x):=f\left(\left[x, x_{1}, \cdots, x_{n}\right]\right)-\left[f(x), x_{1}, \cdots, x_{n}\right]-\cdots-\left[x, x_{1}, \cdots, f\left(x_{n}\right)\right]$.
The proof of the next result is a straightforward (but somehow tedious) calculation.

Proposition 5.5 Let \mathcal{L} be an $(n+1)$-Leibniz algebra and let M be a representation of \mathcal{L}. Then the above homomorphisms define a structure of representation of $\mathcal{D}_{n}(\mathcal{L})$ on $\operatorname{Hom}(\mathcal{L}, M)$.

Let \mathcal{L} be a Leibniz n-algebra and let M be a representation of \mathcal{L}. One defines the cochain complex ${ }_{n} C L^{*}(\mathcal{L}, M)$ to be $C L^{*}\left(\mathcal{D}_{n-1}(\mathcal{L}), \operatorname{Hom}(\mathcal{L}, M)\right)$. We also put

$$
{ }_{n} H L^{*}(\mathcal{L}, M):=H^{*}\left({ }_{n} C L^{*}(\mathcal{L}, M)\right)
$$

Thus, by definition one has ${ }_{n} H L^{*}(\mathcal{L}, M) \cong H L^{*}\left(\mathcal{D}_{n-1}(\mathcal{L}), \operatorname{Hom}(\mathcal{L}, M)\right)$. Let us observe that for $n=2$, one has ${ }_{2} C L^{m}(\mathcal{L}, M) \cong C L^{m+1}(\mathcal{L}, M)$ for all $m \geq 0$. Thus

$$
{ }_{2} H L^{m}(\mathcal{L}, M) \cong H L^{m+1}(\mathcal{L}, M), m \geq 1
$$

and ${ }_{2} H L^{0}(\mathcal{L}, M) \cong \operatorname{Der}(\mathcal{L}, M)$. Comparison of the definitions shows that

$$
{ }_{n} H L^{0}(\mathcal{L}, M) \cong \operatorname{Der}(\mathcal{L}, M)
$$

holds for any Leibniz n-algebras \mathcal{L}. Similarly one has

$$
\operatorname{Ker}\left(d:{ }_{n} C L^{1}(\mathcal{L}, M) \rightarrow{ }_{n} C L^{2}(\mathcal{L}, M)\right) \cong Z(\mathcal{L}, M)
$$

and therefore

$$
\begin{equation*}
\operatorname{Ext}(\mathcal{L}, M) \cong{ }_{n} H L^{1}(\mathcal{L}, M) \tag{5.6}
\end{equation*}
$$

Proposition 5.7. Let \mathcal{L} be a free n-Leibniz algebra and let M be a representation of \mathcal{L}. Then

$$
{ }_{n} H L^{m}(\mathcal{L}, M)=0, m \geq 1
$$

Proof. The main result of Section 4 shows that $\mathcal{D}_{n-1}(\mathcal{L})$ is a free Leibniz algebra. Thanks to Corollary 3.5 of [5] we have $H L^{i}\left(\mathcal{D}_{n-1}(\mathcal{L}),-\right)=0$ for $i \geq 2$ and thus ${ }_{n} H L^{m}(\mathcal{L},-)=0, m \geq 1$.

Let us recall that in [7] Quillen developped the cohomology theory in a very general framework. This theory can be applied to Leibniz n-algebras. It has the following description. Let \mathcal{L} be a Leibniz n-algebra and let M be a representation of \mathcal{L}. Then Quillen cohomology of \mathcal{L} with coefficients in M is defined by

$$
H_{Q u i l l e n}^{*}(\mathcal{L}, M):=H^{*}\left(\operatorname{Der}\left(P_{*}, M\right)\right)
$$

Here $P_{*} \rightarrow \mathcal{L}$ is an augmented simplicial n-Leibniz algebra, such that $P_{*} \rightarrow$ \mathcal{L} is a weak equivalence and each component of P_{*} is a free Leibniz n algebra.
Corollary 5.8. Let \mathcal{L} be a Leibniz n-algebra and let M be a representation of \mathcal{L}. Then

$$
H_{\text {Quillen }}^{*}(\mathcal{L}, M) \cong{ }_{n} H L^{*}(\mathcal{L}, M)
$$

Proof. Since $P_{*} \rightarrow \mathcal{L}$ is a weak equivalence, we obtain from the Künneth theorem that ${ }_{n} C L^{m}\left(P_{*}, M\right) \rightarrow{ }_{n} C L^{m}(\mathcal{L}, M)$ is also a weak equivalence. This fact, together with Proposition 5.7, shows that both spectral sequences for the bicomplex ${ }_{n} C L^{*}\left(P_{*}, M\right)$ degenerate and give the expected isomorphism.

Acknowledgments

The first author was supported by the Government of Galicia, grant XUGA 37101 A 97. The third author is very grateful to the University of Vigo and Université Louis Pasteur for hospitality. He was partially supported by the grant INTAS-93-2618-Ext and by the TMR network K-theory and algebraic groups, ERB FMRX CT-97-0107.

References

[1] Y. I. DALETSKII and L. A. TAKHTAJAN, Leibniz and Lie algebra structures for Nambu algebra, Letters in Math. Physics, 39 (1997), 127141.
[2] P. GAUTHERON, Some remarks concerning Nambu mechanics, Letters in Math. Physics, 37, 103-116, 1996.
[3] W. LISTER, A structure theory of Lie triple systems, Trans. Amer. Math. Soc. 72 (1952), 217-242.
[4] J. L. LODAY, Cyclic homology, Grundl. Math. Wiss. Bd. 301, Springer (1992).
[5] J. L. LODAY and T. PIRASHVILI, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann. 296 (1993), 139-158.
[6] Y. NAMBU, Generalized Hamiltonian dynamics. Phys. Rev. D (3) 7 (1973), 2405-2412.
[7] D. QUILLEN. On the (co)homology of commutative rings. Proc. Symp. Pure Math. XVIII, N.Y. (1970), 65-87.
[8] J.-P. SERRE, Lie algebras and Lie groups, Springer Lect. Notes Math., 1500 (1992).
[9] J. STASHEFF, The (secret?) homological algebra of the BatalinVilkovisky approach. In "Secondary calculus and cohomological physics" (Moscow, 1997), 195-210, Contemp. Math., 219, Amer. Math. Soc., Providence, RI, 1998.

